Factor $x^{2}-x-12$.
Solution. We must find factors of $\mathbf{1 2}$ whose algebraic sum will be the coefficient of x, which is -1 . Choose -4 and +3 :
$x^{2}-x-12=\quad(x-4)(x+3)$. Check FOIL answer
Problem 4. Factor. Again, the order of the factors does not matter.
a) $x^{2}+5 x+6=(x+2)(x+3)$
b) $x^{2}-x-6=(x-3)(x+2)$
c) $x^{2}+x-6=(x+3)(x-2)$
d) $x^{2}-5 x+6=(x-3)(x-2)$
e) $x^{2}+7 x+6=\quad(x+1)(x+6)$
f) $x^{2}-7 x+6=(x-1)(x-6)$
g) $x^{2}+5 x-6=(x-1)(x+6)$
h) $x^{2}-5 x-6=(x+1)(x-6)$

Problem 5. Factor.
a) $x^{2}-10 x+9=(x-1)(x-9)$
b) $x^{2}+x-12=(x+4)(x-3)$
c) $x^{2}-6 x-16=(x-8)(x+2)$
d) $x^{2}-5 x-14=(x-7)(x+2)$
e) $x^{2}-x-2=(x+1)(x-2)$
f) $x^{2}-12 x+20=(x-10)(x-2)$
g) $x^{2}-14 x+24=(x-12)(x-2)$

Example 3. Factor completely $6 x^{8}+30 x^{7}+36 x^{6}$.
Solution. To factor completely means to first remove any_GCF

Problem 6. Factor completely. First remove any common factors.
a) $x^{3}+6 x^{2}+5 x=x\left(x^{2}+6 x+5\right)=$

$$
x(x+5)(x+1)
$$

b) $x^{5}+4 x^{4}+3 x^{3}=x^{3}\left(x^{2}+4 x+3\right)=$

$$
x^{3}(x+1)(x+3)
$$

c) $x^{4}+x^{3}-6 x^{2}=x^{2}\left(x^{2}+x-6\right)=$

$$
x^{2}(x+3)(x-2)
$$

d) $4 x^{2}-4 x-24=4\left(x^{2}-x-6\right)=$

$$
4(x+2)(x-3)
$$

e) $2 x^{3}-14 x^{2}-36 x=2 x\left(x^{2}-7 x-18\right)=$

$$
2 x(x+2)(x-9)
$$

f) $12 x^{10}+42 x^{9}+18 x^{8}=6 x^{8}\left(2 x^{2}+7 x+3\right)=$

2nd Level

Example 4. Factor by making the leading term positive.
$-x^{2}+5 x-6=-\left(x^{2}-5 x+6\right)=-(x-2)(x-3)$.
Problem 7. Factor by making the leading term positive.
a) $-x^{2}-2 x+3=-\left(x^{2}+2 x-3\right)=$
$-(x+3)(x-1)$
b) $-x^{2}+x+6=-\left(x^{2}-x-6\right)=$ $-(x+2)(x-3)$
c) $-2 x^{2}-5 x+3=-\left(2 x^{2}+5 x-3\right)=$ $-(2 x-1)(x+3)$

